ENVIRONMENTAL CHEMISTS

Date of Report: July 28, 1997 Date Received: July 22, 1997 Project: Metro Grab, PO #M57890 Date Samples Extracted: July 22, 1997 Date Extracts Analyzed: July 23, 1997

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLE FOR CHROMIUM, COPPER, NICKEL, AND ZINC USING METHOD 6010

Samples Processed Using Method 3005A Results Reported as mg/L (ppm)

Sample ID	Chromium	Copper	<u>Nickel</u>	<u>Zinc</u>
M57890	0.75	0.76	0.93	0.10
Method Blank	< 0.05	< 0.05	< 0.05	< 0.05

ENVIRONMENTAL CHEMISTS

Date of Report: July 28, 1997 Date Received: July 22, 1997 Project: Metro Grab, PO #M57890

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS BY INDUCTIVELY COUPLED PLASMA (ICP) (METHOD 6010)

Laboratory Code: 79608 (Duplicate)

Analyte:	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference	Acceptance Criteria
			Various Salar		77-27 75-3-0 2.11
Chromium	mg/L (ppm)	0.75	0.81	8	0-20
Copper	mg/L (ppm)	0.76	0.74	3	0-20
Nickel	mg/L (ppm)	0.93	0.97	4	0-20
Zinc	mg/L (ppm)	0.10	0.12	18a	0-20

Laboratory Code: 79608 (Matrix Spike)

							Relative
	Reporting	Spike	Sample	% I	Recovery	Acceptance	Percent
Analyte:	Units	Level	Result	MS	MSD	Criteria	Difference
			THE STATE OF THE S				
Chromium	mg/L (ppm)	5	0.75	88	89	80-120	1
Copper	mg/L (ppm)	5	0.76	86	89	80-120	3
Nickel	mg/L (ppm)	10	0.93	87	89	80-120	2
Zinc	mg/L (ppm)	5	0.10	87	90	80-120	3

Laboratory Code: Spike Blank

	Reporting	Spike	% I	Recovery	Acceptanc	Relative e Percent
Analyte:	Units	Level	MS	MSD	Criteria	<u>Difference</u>
		* * *****				
Chromium	mg/L (ppm)	5	93	94	80-120	1
Copper	mg/L (ppm)	5	94	94	80-120	0
Nickel	mg/L (ppm)	10	94	96	80-120	2
Zinc	mg/L (ppm)	. 5	95	96	80-120	1

a - The analyte was detected at a level less than five times the detection limit. The RPD results may not provide reliable information on the variability of the analysis.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D.
Beth Albertson, M.S.
Charlene Jensen, M.S.
Bradley T. Benson, B.S.
Kurt Johnson, B.S.
Melanie Kirol, B.S.
July 28, 1997

3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

INVOICE # 97ACU0728-1 DUPLICATE COPY

Accounts Payable Alaskan Copper Works 628 South Hanford St. Seattle, WA 98134

RE: Project Metro Grab, PO #M57890: Results of testing requested by Gerry Thompson, Project Manager for material submitted on July 22, 1997.

FEDERAL TAX ID #(b) (6)

ELEUMAN & BRUYA, INC. The gall Avenue West 13 do (\$2 KZ SAMPLE CHAIN OF CUSTODY Works Contact GERACIO 78134 , orano, Kip Seattle 382-4309 152-8379 FAX # (206) PROJECT NAME PURCHASE ORDER # GRAS M 57890 METRO PROJECT LOCATION AAAP) EFS (signature) 32006+4 SAMPLE DISPOSAL INFORMATION Dispose after 30 days Return Samples Call for Instructions Type of Lab Date/Time # of Analyses Sampled Sample Jars Sample # Requested Sample # 7/21/92 12:30 071608 4.0 7.850 PRINT NAME COMPANY Date Time CW FOBI

06/09/97

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Beth Albertson, M.S. Charlene Jensen, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. Melanie Kirol, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

July 28, 1997

Gerry Thompson, Project Manager Alaskan Copper Works 628 South Hanford St. Seattle, WA 98134

Dear Mr. Thompson:

Included are the results from the testing of material submitted on July 22, 1997 from your Metro Grab, PO #M57890 project.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Kurt Johnson Chemist

keh

Enclosures ACU0728R.DOC